read more

first_img FacebookTwitterLinkedInPrint分享 May 21, 2013 — Unavoidable damage caused to the heart and lungs by radiotherapy treatment of tumors in the chest region can be limited by the administration of an ACE inhibitor, a drug commonly used in the treatment of cardiovascular disease, a group of Dutch researchers have found. [1]Common cancers such as breast, esophagus, lung and Hodgkin’s lymphoma are frequently treated with radiotherapy, but the radiation dose that can be given safely is limited by the sensitivity of the health lung tissue that is also irradiated.The lung is a particularly complex and sensitive organ and strategies for protecting it from radiotherapy damage, apart from limiting the dose given and, therefore, the efficacy of the treatment, are few. Presenting the research to the 2nd Forum of the European Society for Radiotherapy and Oncology (ESTRO), Dr. Sonja Van der Veen, MSc, from the University Medical Centre, Groningen, The Netherlands, said that she had set out with colleagues to see whether the use of an ACE inhibitor could protect against early radiation-induced lung toxicity (RILT). Previous studies had shown that damage to blood vessels can play an important role in the development of RILT [2], so the researchers irradiated the lungs, heart or heart and lungs of rats and administered the ACE inhibiter captopril immediately after treatment. The rats’ lung functions were then measured at two-weekly intervals.”After eight weeks, when early lung toxicity is usually at its height, we found that captopril improved the rats’ heart and lung functions, but we were surprised to find that this only occurred when the heart was included in the irradiation field,” said Van der Veen. “This was not due to protection of the lung blood vessels, which were equally damaged with or without captopril. So we investigated further and found that the captopril treatment improved the heart’s function and decreased the level of fibrosis in the heart soon after irradiation. So these new findings show that ACE inhibition decreases RILT by reducing direct acute heart damage.”Irradiating the heart leads to the development of fibrosis, which stiffens it, and this in turn leads to problems in the relaxation of the left ventricle. Due to this, blood flow from the lungs into the heart is hindered, and this can cause pulmonary damage. However, after treatment with captopril, the researchers observed an improvement in ventricular relaxation in the irradiated hearts.Van der Veen and her colleagues are now collaborating with a research group from the Mayo Clinic, Rochester, Minn., in order to design a randomized clinical trial where patients who are treated with radiation to the thoracic area including the heart will be treated with either an ACE inhibitor or a placebo after irradiation.Much progress has been made in radiation treatment over recent years, but in breast cancer, for example, most women still receive high doses to the heart, and this is known to increase the risk of heart disease. A recent study [3] has shown that for each Gray (Gy) [4] of radiation, there is a 7.4 percent increase in the occurrence of a subsequent major coronary event.”Given that most women will receive a dose of between 1 and 5 Gray, and that the dangers are even greater for women with existing cardiac risk factors or coronary disease, this is still a big problem,” said Van der Veen.Rats were chosen for the study because, unlike mice, they are big enough for researchers to be able to irradiate different part of the lungs and heart. The researchers believe that the way in which ACE inhibition works in both animals and humans is similar.”We are confident that our clinical trial will see the same protective effect in humans as that which we have seen in rats,” said Van der Veen. “We will also now begin to study the late effects of ACE inhibition on RILT to see whether it affords similar protection. We believe that our results suggest a promising strategy for shielding patients from radiation damage and improving their quality of life, while at the same time allowing them to receive a high enough dose to ensure the effective treatment of their cancer.”President of ESTRO, Professor Vincenzo Valentini, a radiation oncologist at the Policlinico Universitario A. Gemelli, Rome, Italy, said: “This study underlines the importance of translational research. The understanding of anti-cancer mechanisms, as well as of protective opportunities discovered in the experimental environment, is of upmost importance in the era of personalized medicine. This research provides further evidence of the importance of testing experimental theories in the clinical environment to the ultimate benefit of patients.”References:[1] ACE (angiotensin-converting enzyme) Inhibitors are a class of drugs usually used for treating high blood pressure and heart failure.[2] Ghobadi G, Bartelds B, van der Veen SJ, Dickinson MG, Brandenburg S, Berger RM, et al. Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension. Thorax 2012 Apr;67(4):334-341[3] Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 2013 Mar 14;368(11):987-998.[4] One Gray is the absorption of one joule of energy, in the form of ionizing radiation, per kilogram of matter. Abstract no: OC-0261, Proffered paper session/ Prevent 3: Cardiac Toxicity at 10.30 hrs (CEST) on Sunday 21 April, Room G Feature | May 21, 2013 Common Drug Can Limit Radiation Damage to Cancer Patient’s Heart, Lungs Following radiation, the bone marrow shows nearly complete loss of blood cells in mice (left). Mice treated with the PTP-sigma inhibitor displayed rapid recovery of blood cells (purple, right). Credit: UCLA Broad Stem Cell Research Center/Nature Communications Related Content Sponsored Content | Case Study | Radiation Dose Management | August 13, 2019 The Challenge of Pediatric Radiation Dose Management Radiation dose management is central to child patient safety. Medical imaging plays an increasing role in the accurate… read more News | Radiation Therapy | August 02, 2019 Varian Showcases Cancer Care Systems and Software at AAPM 2019 Varian showcased systems and software from its cancer care portfolio, including the Identify Guidance System, at the… read more News | Patient Positioning Radiation Therapy | August 15, 2019 Mevion and C-RAD Release Integration for Improved Proton Therapy Treatment Quality Mevion Medical Systems and C-RAD announced the integration between the C-RAD Catalyst PT and the Mevion S250i proton… read more News | Patient Positioning Radiation Therapy | August 07, 2019 Qfix kVue One Proton Couch Top Validated by Mevion Medical Systems Qfix and Mevion Medical Systems announced that a special version of the kVue One Proton couch top is now both validated… read more The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s. The MD Anderson Proton Therapy Center expansion is expected to be completed in 2023. Rendering courtesy of Stantec. News | Brachytherapy Systems | August 14, 2019 Efficacy of Isoray’s Cesium Blu Showcased in Recent Studies August 14, 2019 — Isoray announced a trio of studies recently reported at scientific meetings and published in medica read more News | Radiation Therapy | August 16, 2019 Drug Accelerates Blood System’s Recovery After Radiation, Chemotherapy A drug developed by UCLA physician-scientists and chemists speeds up the regeneration of mouse and human blood stem… read more News | Radiation Therapy | August 15, 2019 First Patient Enrolled in World’s Largest Brain Cancer Clinical Trial Henry Ford Cancer Institute is first-in-the-world to enroll a glioblastoma patient in the GBM AGILE Trial (Adaptive… read more Catalyst PT image courtesy of C-RAD The top piece of content in July was a video interview explaining how Princess Margaret Cancer Center is using machine learning to create automated treatment plans. This was a hot topic at the American Association of Physicists in Medicine (AAPM) 2019 meeting in July.  News | Proton Therapy | August 06, 2019 IBA Signs Contract to Install Proton Therapy Center in Kansas IBA (Ion Beam Applications S.A.) recently signed a contract and received the first payment for a Proteus One solution… read more Feature | August 05, 2019 | Dave Fornell, Editor Most Popular Radiology and Radiotherapy Topics in July 2019 August 5, 2019 — Here is the list of the most popular content on the Imaging Technology New (ITN) magazine website fr read more News | Proton Therapy | August 08, 2019 MD Anderson to Expand Proton Therapy Center The University of Texas MD Anderson Cancer Center unveiled plans to expand its Proton Therapy Center during a… read more last_img

Leave a Reply

Your email address will not be published. Required fields are marked *